Ihr Startpunkt für Innovation

Magnetic Wheel Speed Sensors and Eddy Currents

Markus Adam CTR / FH Kärnten

Abstract: The focus of the study at hand is set to magnetic speed sensing and the influence of eddy currents on these systems. Magnetic speed sensing is used in many applications throughout different industrial domains like automotive, aeronautic a.s.o.. As there exist different versions of magnetic speed sensors like back bias, with or without pole wheel, they have one thing in common, they have to deal with eddy currents developing in conductive components in the used system geometry, as for example in the lead frame where the sensor is mounted on.

Previous studies by Ortner et al. have shown that eddy currents that develop in thin layers, like e.g. the lead frame of a sensor, can have a positive influence on the magnetic speed sensor signal. While one would in principle expect, that eddy currents always lead to an amplitude reduction and a phase shift it was shown that the sensor - signal can be enhanced by placing electrical conductive components in a way that the eddy current field developing deflects the permanent field in direction of the hall element. This thesis is taking on the work previously done by the fore-mentioned authors. With the help of ANSYS Maxwell Version b16 - 18 the findings of the foregone studies should be verified and taken a step further to identify the key parameters for the eddy current influence on magnetic speed sensor using back bias systems. While the amplitude reduction caused by Eddy Currents could be reproduced, the linear progression could only be reproduced for frequencies above the "reduction start"-frequency.

More topics of Coffee Journal Club...

Diese Website nutzt Cookies, um Ihr Nutzererlebnis zu verbessern. Durch die weitere Nutzung dieser Webseite erklären Sie sich mit der Verwendung von Cookies einverstanden. Weitere Informationen hierzu finden Sie in unserer Datenschutzerklärung