Ihr Startpunkt für Innovation

X-ray diffraction microscopy for nanoscale imaging of biological samples

Dr. Jan Steinbrener, CTR

X-ray Diffraction Microscopy (XDM) has been gaining in popularity for nanoscale imaging of biological and material science samples. Its high penetration depth (compared to electron microscopy) and its good dose efficiency (compared to its lens-based X-ray alternative) make it uniquely suited for imaging whole biological specimens, where radiation damage is a concern. From a recorded diffraction pattern, the complex exit wave of the object can be recovered using an iterative reconstruction algorithm. In addition to structural information, the resulting data contains depth information of the object along the 2D projection and quantitative phase information. The extension to 3D imaging is straightforward and allows for element-specific reconstruction of the complex object function.

With the advent of X-ray lasers with high power pulses in the femtosecond regime, the technique can be extended to even the most radiation sensitive samples (such as micro-crystals), as the diffraction pattern can be recorded before any structural changes due to radiation damage occur (diffract then destroy). Results of the imaging of yeast cells (freeze-dried and frozen-hydrated) as well as structure determination of micro-crystals using a free-electron laser will be presented.

Diese Website nutzt Cookies, um Ihr Nutzererlebnis zu verbessern. Durch die weitere Nutzung dieser Webseite erklären Sie sich mit der Verwendung von Cookies einverstanden. Weitere Informationen hierzu finden Sie in unserer Datenschutzerklärung